4 research outputs found

    Fire And Successional Trajectories In Boreal Forest: Implications For Response To A Changing Climate

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2003Because of the key role played by fire in structuring boreal forest ecosystems, interactions between vegetation and fire regime may be an important and dynamic control of forest response to climate change. This research uses a series of field observations and experiments in boreal forests to examine the nature of several potential fire and vegetation interactions, and how such interactions may influence forest response to climate change. Long-term observations of post-fire succession provide information on the timing of tree establishment and the effects of early establishment on subsequent successional trajectories. The role of competitive interactions in driving patterns of early establishment was tested with experimental manipulations of aspen (Populus tremuloides) cover after fire. This research demonstrated that competition by aspen re-sprouts may reduce the success of conifer establishment and favor long-term dominance by deciduous trees. The effects of fire severity on successional trajectories were tested in a series of field experiments that contrasted patterns of seedling establishment across differences in depth of the post-fire organic layer. All species in the experiment responded negatively to decreased fire severity, but deciduous trees were more sensitive in their response than conifers. Thus, variations in burn severity are likely to mediate deciduous establishment in organic-rich stands. Observations of natural tree regeneration in stands that burned at different ages also indicate that a decrease in fire interval can influence the relative abundance of deciduous and coniferous species by reducing conifer establishment. Over longer time scales, changes in biota caused by species migration may influence fire and vegetation interactions. Observations of post-fire regeneration at the current distribution limits of lodgepole pine (Pinus contorta) indicate that continued range expansion of pine could initiate rapid shifts in dominance from spruce to pine within a single fire cycle. Together, these results provide insight into the dynamic feedbacks between fire and vegetation that can lead to high levels of system resilience, while also promoting rapid responses when threshold conditions are crossed. A more complete understanding of these interactions will improve our ability to manage and predict boreal ecosystem responses to a changing climate

    Reproduction as a bottleneck to treeline advance across the circumarctic forest tundra ecotone

    Get PDF
    Published versionThe fundamental niche of many species is shifting with climate change, especially in sub-arctic ecosystems with pronounced recent warming. Ongoing warming in sub-arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonizing tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species-specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large-coned and -seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on pre-dispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems

    Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere

    Get PDF
    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing
    corecore